
variations in the signing conditions mentioned above 
may affect some of the signature features, but not 
all of them. Therefore, it is not surprising that many 
efforts of the scientific community have been carried 
out so far for the analysis of signature stability, under 
the assumption that the stability regions of a signature 
convey useful information for automatic signature 
verification. 

Signature stability can be estimated directly from 
the signature signal or indirectly on the set of features 
used for representing the signature (Impedovo & Pirlo 
2008). Among the methods for directly estimating 
on-line signature stability, those using Dynamic Time 
Warping (DTW) to derive a local stability function 
(Dimauro & al., 2002; Huang & Yan, 2003) are the 
most similar to the one presented in this paper in 
that the analysis of local stability is used to select the 
best subset of reference signatures (Di Lecce & al., 
1999). These approaches have shown that there is a 
set of features that remains stable over long periods, 
while there are other features that change significantly 
with time, as a function of signer age (Guest, 2004: 
Guest, 2006; Kato & al., 2006; Houmani & al., 2009). 
Signature variability is affected more by fluctuations 
of the parameters associated with the central neural 
coding than the peripheral parameters reflecting the 
timing properties of the muscular system activated by 
the action plan (Djioua & Plamondon, 2009).
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1. Introduction

Handwritten signatures are one of the most 
interesting biometric features since people are familiar 
with the use of signatures in their daily life, and they 
are largely accepted as proof of one’s individual 
identity. In recent years, along with the extraordinary 
diffusion of the Internet and the growing need for 
personal verification, automatic signature verification 
is being considered with renewed interest. 

Handwritten signatures are complex patterns 
that originate from a complex generation process that 
depends on both the psychophysical state of the subject 
and the writing conditions. Hence, a large amount 
of variability can be observed in the handwritten 
signatures of a subject produced at different times 
(Impedovo & Pirlo 2008; Impedovo & al., 2012). Still, 
the signature is a highly automated motor task that the 
writer has learned along the years, and therefore, it has 
been stored in his/her brain as both a sequence of target 
points to reach and a sequence of motor commands 
to be executed (Senatore, 2012). So, it is expected that 
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Building on those findings, we propose a method 
for modeling the signing habit of a subject by detecting 
the stability regions in a set of genuine signatures. 
The model builds upon handwriting generation 
studies and is provided in terms of both the most 
representative signatures and an estimate of their 
variability. In the following, Section 2 presents the 
rationale of the method, while Section 3 describes its 
current implementation. Section 4 reports the results 
of a signature verification experiment, while the 
conclusions summarize the most important findings 
and outline future work. 

2. The rationale of the method

According to handwriting generation studies, the 
complex movements needed to generate handwriting 
can be seen as a composition of elementary movements, 
each corresponding to an elementary shape or stroke 
(Plamondon & al., 1989). Such elementary strokes are 
drawn one after the other and the fluency in writing 
emerges from the time superimposition of the strokes. 
In other words, as the writer becomes familiar with 
a given word, he knows how long it takes to draw a 
stroke and where it will finish, so that the next stroke 
can be initiated before the current one is completed 
(Plamondon, 1995). As a consequence, group of 
strokes with which the writer is familiar with are 
“embedded” into a single sequence, which is drawn 
without any feedback, as they were “elementary” 
writing movements. 

Studies on motor control have proven that at 
the beginning of handwriting learning, each stroke 
is aimed at reaching the target point that has been 
visually selected and is executed independently from 
the previous or the following one. Such a stop-and-
go writing modality is slow, because after reaching a 
target point the next one needs to be selected and the 
appropriate motor commands planned, and expensive, 
because of both the cognitive load for planning and the 
need to overcome the inertia for executing each stroke. 
By repeated practice, the sequence of target points 
becomes familiar to the writer, as well as the sequence 
of motor commands needed to execute them, so that 
the next movement can start before the current one 
terminates. This anticipation allows for a faster and 
more economical writing, because of the elimination 
of both the pauses between successive strokes and the 

corresponding inertias. When the learning completes, 
fluency is achieved, in that the whole sequence of motor 
commands has been learned and stored in such a way 
that it is resorted from memory and the corresponding 
movements executed automatically with proper timing 
and without any visual and proprioceptive feedback, 
as it were an elementary movement (Grossberg & 
Paine, 2000; Senatore, 2012).

According to those findings, and because in case 
of a highly automated handwriting movement as 
a signature its central neural coding is less prone to 
variations than the peripheral parameters reflecting 
the timing properties of the muscular system activated 
by the action plan, we assume that sequence of strokes 
corresponding to well learned movements will appear 
in many instances of a signature. Therefore, such 
sequences of strokes represent the desired stability 
regions, that together with the estimate of the their 
variability represent the proposed model of the 
signer.

3. The proposed method

According to the points raised before, we need to 
find the target points visually selected by the writer 
for describing his writing habits, which are hidden in 
the trace because of the anticipatory effect. For the 
purpose, any of the stroke segmentation methods 
proposed in literature can be adopted, and in the current 
implementation we have used the multiresolution 
algorithm described by (De Stefano & al, 2004). In 
Figure 1, the results of the stroke segmentation for 
both a genuine and a forged signature are shown.

The detection of the stability regions is achieved 
by an ink matcher that finds the longest common 
sequences of strokes with similar shapes between 
the inks of a pair of signatures. For deciding when 
two sequences are similar enough, i.e. when they 
match, and in analogy with the stroke segmentation 
algorithm mentioned above, we exploit the concept 
of saliency that has been proposed to account for 
attentional gaze shift in primate visual system (Itti & 
al, 1998). The rationale behind this choice is that, by 
evaluating the similarity at different scales and then 
combining this information across the scales, sequence 
of strokes that are “globally” more similar than other 
will stand out in the saliency map. The “global” nature 
of the saliency guarantees that its map provides more 
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reliable estimation of ink similarity with respect to that 
provided by “local” criteria, as it is usually proposed 
in the literature. 

To implement such an approach we need to define a 
scale space, find a similarity measure to be adopted at each 
scale, compute the saliency map, and eventually select 
the matching pieces of ink. As with regards to the scale 
space, we will adopt as a scale the number of strokes in 
the sequences whose similarity is being measured. Such 
a number will be referred in the following as the length 
of the sequence. Let us assume that the two sequences 
have N and M strokes, respectively. The number of scales 
corresponds to the length K ≤ min(N,M) of the longest 
similar sequence of strokes. Note that the inequality sign 
holds because we assume that ascenders and descenders 
can match only themselves, not any other strokes. For 
instance, the shape of both the character “e” and the 
character “l” could be segmented in two strokes whose 
shapes could be very similar, but because the former does 
not include any ascenders, while the contains two of them, 
such a match is not even attempted. Thus, K represents 
the length of the longest common sequence of compatible 
strokes, i.e. strokes that can be matched. Successive 
scales are obtained considering sequences made of k=K, 
K-1, …, 2 strokes (De Stefano & al., 2007). 

As a similarity measure, we adopted the Weighted 
Edit Distance (WED), which measures the shape 
similarity between pair of strokes (De Stefano & al., 
2005). The shape similarity of a sequence is obtained 
by adding the WED of  its strokes.

After the shape similarity is evaluated at each 
scale, we compute its saliency as it follows. At each 
scale k, the most similar pair of sequences is selected 
and the saliency Sij of  all its strokes is computed as 
Sij = WEDij/k. Thus, the saliency map for a pair of 
inks made of N and M strokes, respectively, assumes 
the shape of an NxM array, whose elements are either 
0, in case of incompatible strokes, or Sjj. The saliency 
map is then thresholded, and the longest diagonal 
sequences of values Sij greater than the threshold 
constitute the desired regions of stability. 

In way of principle, one would expect that, if  
more than two signatures are available, repeating 
the processing described above for every pair of 
signatures will result in the same stability regions. In 
practice, however, both the stroke segmentation and 
the ink matching may introduce errors, in locating the 

Figure 1: (a) (b) (c) are three genuine signatures extracted 
by the SUSig database. Signatures (a) and (b) had 
been selected as reference signature, whereas (c) as a 
questioned signature. (d) is a skilled forged signature. The 
segmentation points are in red. Both signature (a) and 
signature (b) are divided in 22 stroke, whereas (c) is divided 
in 27 stroke and (d) is divided in 25 stroke.

(a)

(b)

(c)

(d)
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segmentation points and/or in deciding if  a sequence of 
strokes is similar to another that may produce different 
stability regions for the set of signatures. To reduce 
such a variability, recalling that the level of automation 
is the result of the learning process as described above 
and that learning is an individual feature, we conclude 
that long stability regions are more writer-specific 
than short ones, and remove the stability regions 
found in a pair of signatures that are subsequences 
of longer ones found in a different pair. If, after this 
removal, there still are different stability regions found 
in different pairs of signatures, it is necessary to define 
a strategy for selecting those genuine signatures, called 
references, that describe at the best the signing habits 
of the writer and that are the most robust with respect 
to the variability introduced by our system. In a 
recent work (Parziale, A., Fuschetto, S.G & Marcelli, 
A, 2013), we have shown that the best results are 
obtained by choosing as references the two signatures, 
ref1 and ref2, which minimize the error rate on the 
training set. Thus, according to our basic assumption, 
the stability regions between the references, i.e. the 
longest sequences of elementary movements executed 
in a highly automated fashion, are represented by the 

longest sequence of similar strokes (LSSS), as shown 
in Figure 2. The lengths of the stability regions found 
by matching the references amongst themselves are 
denoted by Ls(ref1) and Ls(ref2), respectively. 

Once the references of a writer have been selected, 
any other signature f, genuine or not, can be mapped 
in a two dimensional space S by computing its 
coordinates

 (1)

Figure 2: In blue and magenta are painted the stability 
regions detected by matching the ink of the reference 
signatures showed in Figure 1.a and 1.b. The stability regions 
of both signatures are 19 strokes long

(a)

(b)

Figure 3: Questioned 1.c and Reference 1.a are processed 
by the ink matcher. (a) The longest similar sequence of 
strokes (LSSS) found by the ink matcher and belonging to 
1.c  (b) (enlarged image in appendix) Stability regions and 
LSSS are represented by filled squares and squares with 
coloured border, respectively. The solid and the dashed 
lines connect the matching stroke. The dashed lines connect 
stoke of the LSSS that are not included in the stability 
regions. The length of the longest common sequence (c) is 
16.

(a)

(b)

(c)
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where Lm(f,ref1) and Lm(f,ref2) are the lengths of the 
LSSS between the reference refi (i=1,2) and f. In Figures 
3-6, the longest common sequence of strokes between 
a questioned signature and a reference is pointed out 
by solid lines connecting matching strokes. 

Since r1 and r2 vary between 0 and 1, S assumes 
the shape of a square, whose vertices are (0,0), (0,1), 
(1,0) and (1,1). In such a space, genuine signatures, 
that should have a long match with both the references 
should be represented by points close to the vertex of 
coordinates (1,1). On the contrary, forged signatures 
should not have a long match with any of the references, 
and therefore should be represented by points near 
to the vertex of coordinates (0,0). In Figures 7 and 
8, genuine and forged signatures are mapped in the 
space S.

If  a set of genuine and forged signatures for a 
writer is available, it is possible to select the references 
and to find two regions, Cg and Cf, by mapping the 
other signatures in the space S. Cg is defined as the 
portion included in S of  the circle centered at the 
point (1,1) with radius Tg equal to the distance of the 
forged signature nearest to the point (1,1). Instead, Cf 

is the circle centered at the point (0,0) with radius Tf 
equal to the distance of the genuine signature nearest 
to the point (0,0), as shown in figure 8. According 
to our basic assumptions, thus, the references, with 
their stability regions, and the two regions, Cg and Cf 
constitute the model of signer we have been looking 
for.

4. Experimental Results 

To prove both the validity of our basic assumptions 
and the efficiency of our implementation of the model, 
we have performed a verification task by mapping the 
signatures under investigation in S as above, and by 
evaluating the position of the points representing the 
signatures respect to the two regions Cg and Cf. The 
decision criterion is as it follows: 

 If  the regions C1. g and Cf  overlap, a signature 
is considered genuine if  it belongs to the 
intersection and it is nearest to Tg than Tf ;
 If  the regions are disjoined or the signature 2. 
doesn’t belongs to the intersection, it is 
considered genuine if  it is mapped in the region 
Cg or if  it is out of Cg but nearest to Tg than Tf.

Figure 4: Questioned 1.c and Reference 1.b are processed 
by the ink matcher. (a) The LSSS found by the ink matcher 
and belonging to 1.c  (b) (enlarged image in appendix) 
Stability regions and LSSS are represented by filled squares 
and squares with coloured border, respectively. The solid 
lines connect the matching stroke. The length of the longest 
common sequence is 19.

(a)

(b)

Figure 5: Questioned 1.d and Reference 1.a are processed 
by the ink matcher. (a) The LSSS found by the ink matcher 
and belonging to 1.d  (b) (enlarged image in appendix) 
Stability regions and LSSS are represented by filled squares 
and squares with coloured border, respectively. The solid 
lines connect the matching stroke. The second stroke of the 
reference matches with the sequence of the second and the 
third stroke of the questioned.  The length of the longest 
common sequence is 7.

(a)

(b)
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We have chosen such a decision criterion because 
it does not exploit any other information that the 
length of the match between the questioned and 
the stability regions of the reference, which, in our 
model, is an estimate of how much of the automated 
movements found in the references are found in the 
questioned: the longer the match, the higher the level 
of automation of the questioned and, consequently, 
the higher the likelihood of the questioned to be drawn 
by the same author of the references. In other words, 
the adopted decision criterion is meant to estimate 
the discriminative power of the stability regions 

per se, without relying on any features or classification 
strategy that could be used to further improve the 
performance of the system. 

The performance of the proposed method has been 
evaluated on the signatures of the Blind sub corpus 
of the SUSIG database (Kholmatov, A. & Yanikoglu, 

Figure 6: Questioned 1.d and Reference 1.b are processed by 
the ink matcher. (a) The LSSS found by the ink matcher and 
belonging to 1.cd (b) (enlarged image in apendix) Stability 
regions and LSSS are represented by filled squares and 
squares with coloured border, respectively. The solid and the 
dashed lines connect the matching stroke. The second stroke 
of the reference matches with the sequence of the second and 
the third stroke of the questioned. The dashed lines connect 
stoke of the LSSS that are not included in the stability 
regions. The length of the longest common sequence (c) is 6..

(a)

(c)

(b) Figure 7: Questioned signatures 1.c and 1.b are 
mapped in the space S defined by the references 1.a 
and 1.b. The coordinates of two points follow by 
the lengths of the longest common sequences and 
the lengths of the stability regions reported in the 
captions of the previous figures.

Figure 8: Model of a subject. The mapping of the 
signatures from the training set and the decision 
regions for genuine and forgery. The thresholds Tg 
and Tf are in green and red, respectively.
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Figure 9: Users of the Blind database are grouped 
in 4 classes by evaluating the mean ratio between 
the length of the stability region and the length of 
the whole reference. In blue, the percentage of users 
for each class. In red, the mean recognition rate for 
each class.

B., 2009). The publicly available part of sub corpus 
consists of signatures donated by 90 individuals with 
ages varying between 20 and 50 years old. A group 
of 30 subjects provided eight genuine signatures, while 
the other subjects provided 10 genuine signatures. 
Each subject forged the signature of another one 10 
times. In our experiments the signatures of each user 
were randomly divided into two disjoined subsets, 
the training set, made of five genuine and five forged 
signatures, and the test set containing the remaining 
ones. This random partition was repeated three times 
for each user in order to compute the model of writer 
in different starting conditions and eventually to show 
that the results are not biased by the selection of the 
training set.

Applying the decision criterion described above, 
we achieved an average recognition rate of 86,7% 
with a standard deviation of 4,64%, an average False 
Acceptance Rate of 11,15% and an average False 
Rejection Rate of 15,28%.

Eventually, for the purpose of showing to what 
extent the performance of the proposed method 
are related to the level of automation in the signing 
process, the users of the Blind sub corpus have been 
grouped by the mean ratio between the length of the 
stability region and the length of the whole signature, 
evaluated over all the pairs of genuine signatures of 
each user. Users have been grouped in four classes and 
the recognition rate has been computed for each class, 
as shown in figure 9. The values of the False Reject 
Rate and the False Acceptance Rate for each class are 
reported in Table 1. 

5. Conclusions 

We have presented a model for describing the 
signing habit of a subject centered upon the concept 
of the stability regions of a signature, defined as the 
longest common sequences of similar strokes among 
a set of genuine signatures. The adopted definition 
follows from both handwriting generation and motor 
control studies, according to which the variability 
encountered in specimen produced by the same subject 
at different times is mainly dependent on the actual 
setting of the parameters characterizing the skeletal 
muscular system involved in handwriting generation, 
since the neural central coding of the action plan of 
the whole signature, that has been developed during 
the learning, is subject specific and much more stable. 

Mean Ratio
Number of 

Users
Rec. Rate FAR FRR

<= 35% 19 78,50% 12,2% 35,4%

>35% & <=50% 29 87,68% 9,1% 15,6%

>50% & <=65% 30 90,50% 6% 14,6%

>65% & <=85% 12 94,16% 3,3% 8,8%

Table 1: Users of the Blind database are grouped in 4 classes by evaluating the mean ratio between the length of the stability 
region and the length of the whole reference. Mean values of Recognition Rate, FAR and FRR for each class.
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The model includes also an estimate of the extent 
to which the stability regions are found within both 
genuine and forged signatures. 

We have evaluated the effectiveness of the proposed 
definition of stability by performing a signature 
verification experiment, in which the stability regions 
are used for both selecting the references signature 
and computing the values of two thresholds used 
to decide whether the signature under verification is 
genuine or forged. The obtained results on a standard 
database show that, despite the simplicity of both the 
feature used to describe the stability region, i.e. its 
length, and the decision criterion adopted to decide 
whether an unknown signature is genuine or forged, 
the performance are comparable with those reported 
by other authors on the same dataset. 

The performance of the proposed method 
depending on the mean ratio between the length 
of the stability region and the length of the whole 
signature brings further evidence for supporting our 
claim that our definition of stability regions is actually 
able to discriminate the regions of the signature that 
capture writer-specific information from those that 
are more subject to variations depending on the 
signing conditions. In fact, performance gets better 
as the stability regions get longer, i.e. as the level 
of automation in the signing process gets higher, 
producing more similar ink. On the other side, when 
the stability region covers a little part of the whole 
signature it is likely that the user has learned different 
motor programs for signing and the performance get 
worse. 

The proposed method evaluates only the shape of 
the signatures. Handwriting generation studies, on the 
other hand, suggest that, being a signature the result 
of a dynamic process, a better modeling of the signing 
habits should also include some information about 
the dynamics of the process, such as velocity profile, 
acceleration profiles, total writing time on the paper 
and on-the-fly movement duration. Those aspects, 
as well as different criteria to select the references, 
in particular when different motor programs seems 
to be performed by the user, a more powerful set of 
features to describe the stability regions and a more 
sophisticated decision strategy, will be the focus of our 
future investigations.
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Figure 3: (b) Stability regions and LSSS are represented by filled squares and squares with 
coloured border, respectively. The solid and the dashed lines connect the matching stroke. 
The dashed lines connect stoke of the LSSS that are not included in the stability regions. The 
length of the longest common sequence

Figure 4: (b) Stability regions and LSSS are represented by filled squares and squares with 
coloured border, respectively. The solid lines connect the matching stroke. The length of the 
longest common sequence is 19.

Figure 5: (b) Stability regions and LSSS are represented by filled squares and squares with 
coloured border, respectively. The solid lines connect the matching stroke. The second 
stroke of the reference matches with the sequence of the second and the third stroke of the 
questioned.  The length of the longest common sequence is 7.

Figure 6: (b) Stability regions and LSSS are represented by filled squares and squares with 
coloured border, respectively. The solid and the dashed lines connect the matching stroke. 
The second stroke of the reference matches with the sequence of the second and the third 
stroke of the questioned. The dashed lines connect stoke of the LSSS that are not included 
in the stability regions. The length of the longest common sequence
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